

Carbon Capture Corporation

Economic and Technology Advancement Advisory Committee

September 6, 2007

The Concept

Carbon Capture Corporation

- Integrate
 - Peak Power Production Plant
 - Carbon Capture Technology
 - Algae-Based Carbon Dioxide (CO₂) Absorption

Deliver

- CO₂ Emission Free Energy
- Scalable CO₂ Mitigation Solution through Photosynthetic CO₂ Absorption in Algae
- Algae as a By-Product
 - Biological Food Source
 - Biofuel

Power Plant

CO₂
Capture

Algae CO₂
Fixation

Power Plant Emissions

Algae Farm

The Company

Privately Held, Based in La Jolla & Imperial Valley, California

- Management, R&D Staff & Consultants Include:
 - ✓ Paul Engh, CEO
 - ✓ Craig Metz, EVP
 - ✓ Bernard Raemy, Energy Development
 - ✓ Ed Hale, Government Relations
 - ✓ Martin Gordon, Process Development
 - ✓ Jim DeMattia, Aquatic Biology
 - ✓ Bill Engler, CEO and Founder, Aquafarms, Advisory Board
 - ✓ Andrew Benedek, Founder, ZENON Environmental, Advisory Board
 - ✓ Tom Daniel, M.D., President, Research at Celgene, Advisory Board
 - ✓ Don Engh, Mechanical Engineering
 - ✓ Stuart Bussell, Ph.D., Process Development Advisor
 - ✓ **Dallas Weaver, Ph.D.**, Consultant
 - ✓ **Alina Tan**, Consultant
 - ✓ Leo Sullivan, Legal Affairs

One 40-Acre Site (Calipatria, CA), Over 800 Acres Acquired To Date in Imperial valley, CA

Testing Program

Test Program	Equipment	Status		
Phase 1	Diesel Generator (5 hp)	Complete (Proof of Concept)		
Phase 2	 ➤ Two 30 kW LPG Capstone 330 ➤ One Diesel Engine (80 hp) 	 ▶ Preliminary Test Results ▶ Testing in Progress ▶ Test Results Late 2007 		
Phase 3	 ➤ One 1 MW Gas Turbine (Natural Gas) ➤ One 2.5 MW Engine (Bio Diesel) 	➤ In Design / Fabrication ➤Test Results Mid 2008		
Phase 4	46 MW Gas Turbine (Natural Gas)	 Permits Secured Interconnection Expected Spring 2008 Commercial Operation Targeted Spring 2009 		

Air Quality Monitoring Test # 2: June 2, 2007

Testo 350-S Control - XL Analyzer

- 5 HP Diesel Engine (idle)
- Using 6 of 7 Chambers within Column
 - CO₂: 72% Reduction
 - NO_x: 41% Reduction
 - CO: 15% Reduction

Air Quality Monitoring Test # 3: Preliminary Indications

Air Velocity [ft/min]	CO ₂ in [%]	CO ₂ Capture [%]
900	1.51	11
300	1.51	29
200	1.51	41
200	4.56*	40

^{*} Pure CO2 Added

Pond/Algae Production

What limits algae growth rates

- Light levels -- self shading increases with increasing density
- CO₂ -- Available CO₂ in the growth medium
 - Available CO₂ is a function of pH and alkalinity
 - At pH > 10.5 and alkalinity of 200 meq/l the partial pressure = 4 ppmv; at pH 11 pp = 0.4 ppm
- Nutrients
 - Fixed N as NH₃, NO₂-, NO₃-; some species can fix N₂
 - Spirulina can't fix nitrogen, must be supplied
 - Soluble P -- as PO₄---
 - Potassium
 - Trace elements: Fe, Zn, B(OH)₃, Co, Mn, Se, other?

Observed growth rate limits

- With high sun light, reasonable densities (light at the bottom) and unlimited nutrients
 - CO₂ becomes rate limiting as the free CO₂ (dissolved in the medium) or partial pressure gets down to the few ppmv range
 - A common situation in high rate algae pond waste treatment systems, even when they have significant CO₂ being added from BOD metabolism.
 - The daily pH and partial pressure variation depends upon the alkalinity Alkalinity up, variation down

Carbonate/CO2 System

$$CO_2(g) \longrightarrow CO_2(I) + H_2O \longrightarrow H_2CO_3$$

- Hydration is slow step in process -- carbonic anhydrase
- Reason for large liquid inventory in CO₂ Scrubber -need reaction time
- Solubility as per Henrys law -- not huge
 - CO₂(I) =~ 0.029 * CO₂(g) (partial pressure in atm)

- These reactions are all very fast
- Equilibrium constants

•
$$pK_2 = \sim 9.2$$

- H₂O
 H⁺ + OH⁻
- pH = log[H+]

46 MW – Peaker Project Development Update

- Real Estate Completed
 - Acquired 160 Acres in March of 2007
- Permitting Completed
 - Conditional Use Permit from Imperial County Planning Department
 - Authority To Construct from Imperial Valley Air Pollution Control District
- Interconnection
 - Queue Position Secured with Imperial Irrigation District in March of 2007
 - System Impact and Facility Studies in Progress
- Equipment Supply
 - Contract Negotiations with Equipment and Services Suppliers
- Marketing
 - Preliminary Discussions with Various Off-Takers
 - Possibility to Build and Operate Merchant During the first Two Years